Publications by authors named "S Paschalis"

The neutron-rich unbound fluorine isotope ^{30}F_{21} has been observed for the first time by measuring its neutron decay at the SAMURAI spectrometer (RIBF, RIKEN) in the quasifree proton knockout reaction of ^{31}Ne nuclei at 235  MeV/nucleon. The mass and thus one-neutron-separation energy of ^{30}F has been determined to be S_{n}=-472±58(stat)±33(sys)  keV from the measurement of its invariant-mass spectrum. The absence of a sharp drop in S_{n}(^{30}F) shows that the "magic" N=20 shell gap is not restored close to ^{28}O, which is in agreement with our shell-model calculations that predict a near degeneracy between the neutron d and fp orbitals, with the 1p_{3/2} and 1p_{1/2} orbitals becoming more bound than the 0f_{7/2} one.

View Article and Find Full Text PDF
Article Synopsis
  • Strengthening existing columns with additional reinforced concrete jackets is a common method to improve their structural performance, including stiffness and load-bearing capacity.
  • This study focuses on using Ultra-High-Performance Fiber-Reinforced Concrete (UHPFRC) jackets to upgrade these columns, analyzing factors like jacket thickness and concrete shrinkage.
  • Findings reveal that UHPFRC significantly enhances the strength and stiffness of reinforced concrete columns, especially when combined with steel bars in the jacket, leading to notable improvements in performance.
View Article and Find Full Text PDF

The structure and decay of the most neutron-rich beryllium isotope, ^{16}Be, has been investigated following proton knockout from a high-energy ^{17}B beam. Two relatively narrow resonances were observed for the first time, with energies of 0.84(3) and 2.

View Article and Find Full Text PDF

Subjecting a physical system to extreme conditions is one of the means often used to obtain a better understanding and deeper insight into its organization and structure. In the case of the atomic nucleus, one such approach is to investigate isotopes that have very different neutron-to-proton (N/Z) ratios than in stable nuclei. Light, neutron-rich isotopes exhibit the most asymmetric N/Z ratios and those lying beyond the limits of binding, which undergo spontaneous neutron emission and exist only as very short-lived resonances (about 10 s), provide the most stringent tests of modern nuclear-structure theories.

View Article and Find Full Text PDF