Nanoparticle mediated photo-induced hyperthermia holds much promise as a therapeutic solution for the management of diseases like cancer. The conventional methods of temperature measurements do not measure the actual temperature generated in the vicinity of the nanoparticles during illumination. In contrast, nano temperature sensors built on hyperthermic nanoparticles can relay local temperatures around the nanoparticles during thermal induction.
View Article and Find Full Text PDFPhotothermal therapy utilizes photothermal agents and the use of nanoparticle agents is deemed advantageous for multiple reasons. Common nano-photothermal agents normally have high conversion efficiencies and heating rates, but bulk temperature measurement methods do not adequately represent the nanoscale temperatures of these nanoheaters. Herein, we report on the fabrication of self-limiting hyperthermic nanoparticles that can simultaneously photoinduce hyperthermia and report back temperature ratiometrically.
View Article and Find Full Text PDFHere we report on the first ultrabright fluorescent nanothermometers, ∼50 nm-size particles, capable of measuring temperature in 3D and down to the nanoscale. The temperature is measured through the recording of the ratio of fluorescence intensities of fluorescent dyes encapsulated inside the nanochannels of the silica matrix of each nanothermometer. The brightness of each particle excited at 488 nm is equivalent to the fluorescence coming from 150 molecules of rhodamine 6G and 1700 molecules of rhodamine B dyes.
View Article and Find Full Text PDFNew ultrabright fluorescent silica nanoparticles capable of the fast targeting of epithelial tumors in vivo are presented. The as-synthesized folate-functionalized ultrabright particles of 30-40 nm are 230 times brighter than quantum dots (QD450) and 50% brighter than the polymer dots with similar spectra (excitation 365 nm and emission 486 nm). To decrease non-specific targeting, particles are coated with polyethylene glycol (PEG).
View Article and Find Full Text PDFCellulose acetate (CA), viscose, or artificial silk are biocompatible human-benign derivatives of cellulose, one of the most abundant biopolymers on earth. While various optical materials have been developed from CA, optical CA nanomaterials are nonexistent. Here we report on the assembly of a new family of extremely bright fluorescent CA nanoparticles (CA-dots), which are fully suitable for in vivo imaging / targeting applications.
View Article and Find Full Text PDF