Publications by authors named "S Paillard"

Two environmentally stable QTLs linked to black spot disease resistance in the Rosa wichurana genetic background were detected, in different connected populations, on linkage groups 3 and 5. Co-localization between R-genes and defense response genes was revealed via meta-analysis. The widespread rose black spot disease (BSD) caused by the hemibiotrophic fungus Diplocarpon rosae Wolf.

View Article and Find Full Text PDF

Key message: One QTL for resistance against Leptosphaeria maculans growth in leaves of young plants in controlled environments overlapped with one QTL detected in adult plants in field experiments. The fungal pathogen Leptosphaeria maculans initially infects leaves of oilseed rape (Brassica napus) in autumn in Europe and then grows systemically from leaf lesions along the leaf petiole to the stem, where it causes damaging phoma stem canker (blackleg) in summer before harvest. Due to the difficulties of investigating resistance to L.

View Article and Find Full Text PDF

A repertoire of the genomic regions involved in quantitative resistance to Leptosphaeria maculans in winter oilseed rape was established from combined linkage-based QTL and genome-wide association (GWA) mapping. Linkage-based mapping of quantitative trait loci (QTL) and genome-wide association studies are complementary approaches for deciphering the genomic architecture of complex agronomical traits. In oilseed rape, quantitative resistance to blackleg disease, caused by L.

View Article and Find Full Text PDF

Phenotyping and mapping data reveal that chromosome intervals containing eyespot resistance genes Pch1 and Pch2 on 7D and 7A, respectively, do not overlap, and thus, these genes are not homoeloci. Eyespot is a stem-base fungal disease of cereals growing in temperate regions. Two main resistances are currently available for use in wheat.

View Article and Find Full Text PDF
Article Synopsis
  • Recombination is crucial for genetic diversity, and this study examines how the presence of C chromosomes affects crossover rates in Brassica napus hybrids.
  • It was found that increasing the number of C chromosomes in hybrids led to significantly higher homologous recombination rates, with certain configurations, specifically C6 and C9, showing the greatest increases.
  • The study reveals that different arrangements of chromosomes can influence genetic recombination, suggesting new strategies for enhancing genetic diversity in breeding programs.
View Article and Find Full Text PDF