Three strains were cultured from the eyes of CD36-knockout mice (B6.129S1-/J) with and without keratitis housed at a biomedical research institute. Bacteria were sequenced using Illumina MiSeq technology for subsequent phylogenetic characterization and identification of virulence factor genes conferring pathogenic potential.
View Article and Find Full Text PDFT cell-based immunotherapies have demonstrated effectiveness in treating diffuse large B cell lymphoma (DLBCL) and follicular lymphoma (FL) but predicting response and understanding resistance remains a challenge. To address this, we developed syngeneic models reflecting the genetics, epigenetics, and immunology of human FL and DLBCL. We show that EZH2 inhibitors reprogram these models to re-express T cell engagement genes and render them highly immunogenic.
View Article and Find Full Text PDFAgeing is associated with a decline in the number and fitness of adult stem cells. Ageing-associated loss of stemness is posited to suppress tumorigenesis, but this hypothesis has not been tested in vivo. Here we use physiologically aged autochthonous genetically engineered mouse models and primary cells to demonstrate that ageing suppresses lung cancer initiation and progression by degrading the stemness of the alveolar cell of origin.
View Article and Find Full Text PDFBackground: Peritoneal metastasis with micrometastatic cell clusters is a common feature of advanced ovarian cancer. Targeted alpha therapy (TAT) is an attractive approach for treating micrometastatic diseases as alpha particles release enormous amounts of energy within a short distance. A pretargeting approach - leveraging the inverse-electron-demand Diels-Alder reaction between tetrazines (Tz) and trans-cyclooctene (TCO) - can minimize off-target toxicity related to TAT, often associated with full-length antibodies.
View Article and Find Full Text PDF