Introduction: The transformative feature of Artificial Intelligence (AI) is the massive capacity for interpreting and transforming unstructured data into a coherent and meaningful context. In general, the potential that AI will alter traditional approaches to student research and its evaluation appears to be significant. With regard to research in global health, it is important for students and research experts to assess strengths and limitations of GenAI within this space.
View Article and Find Full Text PDFThe t(12;21)(p13;q22) translocation, fusing the ETV6 and AML1 genes, is the most frequent chromosomal translocation associated with pediatric B-cell precursor acute lymphoblastic leukemia. Although the genomic organization of the ETV6 gene and a breakpoint cluster region (bcr) in ETV6 intron 5 has been described, mapping of AML1 breakpoints has been hampered because of the large, hitherto unknown size of AML1 intron 1. Here, we report the mapping of the AML1 gene between exons 1 and 3, cloning of ETV6-AML1 breakpoints from different patients, and localization of the AML1 breakpoints within AML1 intron 1.
View Article and Find Full Text PDFAims: The MLL gene on chromosome 11q23 is frequently disrupted by chromosomal translocations in association with haematological malignancies. Recently, a specific site within the 8.3 kb MLL break-point cluster region that is cleaved during the early stages of apoptosis has been identified.
View Article and Find Full Text PDFA distinct population of therapy-related acute myeloid leukemia (t-AML) is strongly associated with prior administration of topoisomerase II (topo II) inhibitors. These t-AMLs display distinct cytogenetic alterations, most often disrupting the MLL gene on chromosome 11q23 within a breakpoint cluster region (bcr) of 8.3 kb.
View Article and Find Full Text PDF