JCO Precis Oncol
January 2025
Purpose: Human epidermal growth factor receptor 2 (HER2)-targeted therapies have shown promise in treating -amplified metastatic colorectal cancer (mCRC). Identifying optimal biomarkers for treatment decisions remains challenging. This study explores the potential of artificial intelligence (AI) in predicting treatment responses to trastuzumab plus pertuzumab (TP) in patients with -amplified mCRC from the phase II TRIUMPH trial.
View Article and Find Full Text PDFBackground: The classification of uterine sarcomas is based on distinctive morphological and immunophenotypic characteristics, increasingly supported by molecular genetic diagnostics. Data on neurotrophic tyrosine receptor kinase () gene fusion-positive uterine sarcoma, potentially aggressive and morphologically similar to fibrosarcoma, are limited due to its recent recognition. Pan-TRK immunohistochemistry (IHC) analysis serves as an effective screening tool with high sensitivity and specificity for -fusion malignancies.
View Article and Find Full Text PDFPurpose: Patients with stage I colorectal cancer (CRC) rarely experience recurrence after curative resection. Therefore, the risk factors for stage I CRC recurrence are yet to be established. We aimed to identify risk factors for stage I CRC recurrence.
View Article and Find Full Text PDFAdvances in biofabrication have enabled the generation of freeform perfusable networks mimicking vasculature. However, key challenges remain in the effective endothelialization of these complex, vascular-like networks, including cell uniformity, seeding efficiency, and the ability to pattern multiple cell types. To overcome these challenges, we present an integrated fabrication and endothelialization strategy to directly generate branched, endothelial cell-lined networks using a diffusion-based, embedded 3D bioprinting process.
View Article and Find Full Text PDFRecent advances in molecular science have significantly enlightened our mechanistic understanding of spinocerebellar ataxia type 7. To further close remaining gaps, we performed a multi-omics analysis using SCA7 mice. Entire brain tissue samples were collected from 12-week-old mice, and RNA sequencing, methylation analysis, and proteomic analysis were performed.
View Article and Find Full Text PDF