Available evidence suggests that various medical/rehabilitation treatments evoke multiple effects on blood hemostasis. It was therefore the aim of our study to examine whether fascial manipulation, vibration exercise, motor imagery, or neuro-muscular electrical stimulation can activate the coagulation system, and, thereby, expose patients to thrombotic risk. Ten healthy young subject were enrolled in the study.
View Article and Find Full Text PDFThe primary objective of urolithiasis therapy is complete stone removal and highest stone-clearance rates possible to minimize recurrence. A novel approach that employs a magnetic suspension and a magnetic probe for the passive collection and removal of small residual fragments was developed. This study assessed the feasibility of this system in porcine models.
View Article and Find Full Text PDFThis work explores the complex hydrodynamics in magnetophoretic microfluidic processes, focusing on the interplay of forces and particle concentrations. The study employs a combined simulation and experimental approach to investigate the impact of magnetophoresis on magneto-responsive nanoparticles (MNPs) and their environment, including non-magneto-responsive nanoparticles (non-MNPs) in a microfluidic system. Our findings reveal that the motion of MNPs induces a hydrodynamic convective motion of non-MNPs, significantly affecting the separation efficiency and purity of the particles.
View Article and Find Full Text PDFContinuous flow magnetophoresis represents a common technique for actively separating particles within a fluid. For separation systems design, accurately predicting particle behaviour helps to characterise system performance, typically measured by the separation efficiency (SE). While finite element method (FEM) simulations offer high accuracy, they demand extensive computational resources.
View Article and Find Full Text PDFMetal-organic framework (MOF) modified with iron oxide, FeO-MOF, is a perspective drug delivery agent, enabling magnetic control and production of active hydroxyl radicals, •OH, via the Fenton reaction. This paper studies cytotoxic and radical activities of Fe-containing nanoparticles (NPs): FeO-MOF and its components - bare FeO and MOF (MIL-88B). Luminous marine bacteria Photobacteriumphosphoreum were used as a model cellular system to monitor bioeffects of the NPs.
View Article and Find Full Text PDF