Activation of the cGAS-STING pathway plays a key role in the innate immune response to cancer through Type-1 Interferon (IFN) production and T cell priming. Accumulation of cytosolic double-stranded DNA (dsDNA) within tumor cells and dying cells is recognized by the DNA sensor cyclic GMP-AMP synthase (cGAS) to create the secondary messenger cGAMP, which in turn activates STING (STimulator of INterferon Genes), resulting in the subsequent expression of IFN-related genes. This process is regulated by Three-prime Repair EXonuclease 1 (TREX1), a 3' → 5' exonuclease that degrades cytosolic dsDNA, thereby dampening activation of the cGAS-STING pathway, which in turn diminishes immunostimulatory IFN secretion.
View Article and Find Full Text PDFProprotein convertase subtilisin-like/kexin type 9 (PCSK9) is a key regulator of plasma LDL-cholesterol (LDL-C) and a clinically validated target for the treatment of hypercholesterolemia and coronary artery disease. Starting from second-generation lead structures such as , we were able to refine these structures to obtain extremely potent bi- and tricyclic PCSK9 inhibitor peptides. Optimized molecules such as demonstrated sufficient oral bioavailability to maintain therapeutic levels in rats and cynomolgus monkeys after dosing with an enabled formulation.
View Article and Find Full Text PDFProprotein convertase subtilisin-like/kexin type 9 (PCSK9) is a key regulator of plasma LDL-cholesterol (LDL-C) and a clinically validated target for the treatment of hypercholesterolemia and coronary artery disease. In this paper, we describe a series of novel cyclic peptides derived from an mRNA display screen which inhibit the protein-protein interaction between PCSK9 and LDLR. Using a structure-based drug design approach, we were able to modify our original screening lead to optimize the potency and metabolic stability and minimize the molecular weight to provide novel bicyclic next-generation PCSK9 inhibitor peptides such as .
View Article and Find Full Text PDFProprotein convertase substilisin-like/kexin type 9 (PCSK9) is a serine protease involved in a protein-protein interaction with the low-density lipoprotein (LDL) receptor that has both human genetic and clinical validation. Blocking this protein-protein interaction prevents LDL receptor degradation and thereby decreases LDL cholesterol levels. Our pursuit of small-molecule direct binders for this difficult to drug PPI target utilized affinity selection/mass spectrometry, which identified one confirmed hit compound.
View Article and Find Full Text PDF