Two newly synthesized ligands, 1-((2-(4-(4-methoxyphenyl)thiazol-2-yl)hydrazono)methyl)naphthalen-2-ol (HL1) and 1-((2-(4-(naphthalen-1-yl)thiazol-2-yl)hydrazono)methyl)naphthalen-2-ol (HL2) were characterized using spectroscopy and single X-ray crystallography. Both belong to triclinic systems with space groups P21/c (HL1) and P-1 (HL2), exhibiting planar structures. Biological assays revealed significant antitumor activity, with HL2 showing significant antitumor activity against HepG2 cells (IC: 3.
View Article and Find Full Text PDFLong Interspersed Nuclear Element 1 (LINE1/L1) retrotransposons, which comprise 17% of the human genome, typically remain inactive in healthy somatic cells but are reactivated in several cancers. We previously demonstrated that p53 silences L1 transposons in human somatic cells, potentially acting as a tumor-suppressive mechanism. However, the precise molecular mechanisms underlying p53-mediated repression of L1 and its life cycle intermediates remain unclear.
View Article and Find Full Text PDFNanoparticles have been of significant interest in various biomedical domains such as drug delivery, gene delivery, cytotoxicity analysis, and imaging. Despite the synthesis of a variety of nanoparticles, their cellular uptake efficiency remains a substantial obstacle, with only a small fraction of delivered nanoparticles (NPs) have been reported to traverse the cell membrane within 24 h. Consequently, higher doses are often necessitated, leading to increased toxicity concerns.
View Article and Find Full Text PDFThe escalating need for lithium-ion batteries (LIBs), driven by their expanding range of applications in our daily lives, has led to a surge in interest in metal selenides as potential anode materials. Among them, BiSe stands out as a promising anode material for LIBs due to its unique layered structure. Herein, we explored hexagonally structured layered BiSe platelets synthesized using the solvothermal method.
View Article and Find Full Text PDF