The carcinogenic potency categorisation approach (CPCA) has recently been introduced by health authorities. In this model, structural features from recent literature, industry proposals, and analyses performed by health authorities, provide a rapid assessment of the potential acceptable intake (AI) for a nitrosamine impurity. As with other screening regulatory values (such as the ICH M7 Threshold of Toxicological Concern), the CPCA is conservative and can be considered a de minimis risk management framework.
View Article and Find Full Text PDFThe unexpected finding of N-nitrosamine (NA) impurities in many pharmaceutical products raised significant challenges for industry and regulators. In addition to well-studied small molecular weight NAs, many of which are potent rodent carcinogens, novel NAs associated with active pharmaceutical ingredients have been found, many of which have limited or no safety data. A tiered approach to establishing Acceptable Intake (AI) limits for NA impurities has been established using chemical-specific data, read-across, or a class-specific TTC limit.
View Article and Find Full Text PDFChemical grouping and read-across are frequently used non-animal alternatives for filling toxicological data gaps. When grouping chemicals, it is critical to define the applicability domain because minor differences in chemical structure can lead to significant differences in toxicity. Here, we present a case study on isoeugenol and methyl eugenol, which are scheduled for review by IARC in June 2023, to illustrate that structural similarity alone may not be sufficient to group chemicals for hazard classification.
View Article and Find Full Text PDF