Publications by authors named "S P Duckles"

We previously found that estrogen exerts a novel protective effect on mitochondria in brain vasculature. Here we demonstrate in rat cerebral blood vessels that 17β-estradiol (estrogen), both in vivo and ex vivo, affects key transcriptional coactivators responsible for mitochondrial regulation. Treatment of ovariectomized rats with estrogen in vivo lowered mRNA levels of peroxisome proliferator-activated receptor-γ coactivator-1 alpha (PGC-1α) but increased levels of the other PGC-1 isoforms: PGC-1β and PGC-1 related coactivator (PRC).

View Article and Find Full Text PDF

Mitochondria support the energy-intensive functions of brain endothelium but also produce damaging-free radicals that lead to disease. Previously, we found that estrogen treatment protects cerebrovascular mitochondria, increasing capacity for ATP production while decreasing reactive oxygen species (ROS). To determine whether these effects occur specifically in endothelium in vivo and also explore underlying transcriptional mechanisms, we studied freshly isolated brain endothelial preparations from intact and ovariectomized female mice.

View Article and Find Full Text PDF

17β-Estradiol (E2) has been shown to protect against ischemic brain injury, yet its targets and the mechanisms are unclear. E2 may exert multiple regulatory actions on astrocytes that may greatly contribute to its ability to protect the brain. Mitochondria are recognized as playing central roles in the development of injury during ischemia.

View Article and Find Full Text PDF

Reproductive effects of sex steroids are well-known; however it is increasingly apparent that these hormones have important actions on non-reproductive tissues such as the vasculature. The latter effects can be relevant throughout the lifespan, not just limited to reproductive years, and are not necessarily restricted to one gender or the other. Our work has established that cerebral blood vessels are a non-reproductive target tissue for sex steroids.

View Article and Find Full Text PDF

Numerous studies show the neuroprotective effects of estrogen, but the underlying mechanism still remains unclear. Recent studies indicate that mitochondria are critically involved in estrogen-mediated neuroprotection. Mitochondria are the main sources of cellular energy and reactive oxygen species (ROS), they play an important role in signaling transduction and cellular life-death decisions.

View Article and Find Full Text PDF