Filter swipe tests are used for routine analyses of actinides in nuclear industrial, research, and weapon facilities as well as following accidental release. Actinide physicochemical properties will determine in part bioavailability and internal contamination levels. The aim of this work was to develop and validate a new approach to predict actinide bioavailability recovered by filter swipe tests.
View Article and Find Full Text PDFFollowing accidental inhalation of radioactive cobalt particles, the poorly soluble and highly radioactive CoO particles are retained for long periods in lungs. To decrease their retention time is of crucial importance to minimize radiation-induced damage. As dissolved cobalt is quickly transferred to blood and eliminated by urinary excretion, enhancing the dissolution of particles would favor Co elimination.
View Article and Find Full Text PDFThis study assessed for the first time the oral and dental health of ultra-trail athletes. We also confirmed and quantified the scale of their exposure to oral health risk factors. This was a cross-sectional study using data from a survey among runners who enlisted in the 2020 edition of the UT4M races ().
View Article and Find Full Text PDFIn the nuclear industry, wound contamination with americium is expected to increase with decommissioning and waste management. Treatment of workers with diethylenetriaminepentaacetic acid (DTPA) requires optimization to reduce internal contamination and radiation exposure. This work aimed at evaluating and comparing different DTPA protocol efficacies after wound contamination of rats with americium.
View Article and Find Full Text PDFInhalation of CoO particles may occur at the work place in nuclear industry. Their low solubility may result in chronic lung exposure to γ rays. Our strategy for an improved therapeutic approach is to enhance particle dissolution to facilitate cobalt excretion, as the dissolved fraction is rapidly eliminated, mainly in urine.
View Article and Find Full Text PDF