Introduction: Hairy vetch () is a promising legume cover crop, but its use is limited by high rates of pod dehiscence and seed dormancy.
Methods: We used phenotypically contrasting pooled DNA samples (n=24 with 29-74 individuals per sample) from an ongoing cover crop breeding program across four environments (site-year combinations: Maryland 2020, Maryland 2022, Wisconsin 2021, Wisconsin 2022) to find genetic associations and genomic prediction accuracies for pod dehiscence and seed dormancy. We also combined pooled DNA sample genetic association results with the results of a prior genome-wide association study.
Hairy vetch ( Roth), a winter-hardy annual legume, is a promising cover crop. To fully leverage its potential, seed production and field performance of must be improved to facilitate producer adoption. Two classic domestication traits, seed dormancy (hard seed) and dehiscence (pod shatter), are selection targets in an ongoing breeding program.
View Article and Find Full Text PDFThe outer membrane (OM) in diderm, or Gram-negative, bacteria must be tethered to peptidoglycan for mechanical stability and to maintain cell morphology. Most diderm phyla from the Terrabacteria group have recently been shown to lack well-characterised OM attachment systems, but instead have OmpM, which could represent an ancestral tethering system in bacteria. Here, we have determined the structure of the most abundant OmpM protein from Veillonella parvula (diderm Firmicutes) by single particle cryogenic electron microscopy.
View Article and Find Full Text PDFHairy vetch, a diploid annual legume species, has a robust growth habit, high biomass yield, and winter hardy characteristics. Seed hardness is a major constraint for growing hairy vetch commercially. Hard seeded cultivars are valuable as forages, whereas soft seeded and shatter resistant cultivars have advantages for their use as a cover crop.
View Article and Find Full Text PDFEmerging antimicrobial resistance urges the discovery of antibiotics with unexplored, resistance-breaking mechanisms. Armeniaspirols represent a novel class of antibiotics with a unique spiro[4.4]non-8-ene scaffold and potent activities against Gram-positive pathogens.
View Article and Find Full Text PDF