Biological nanopores offer a promising approach for single-molecule analysis of nucleic acids, peptides, and proteins. The work presented here introduces a biological nanopore formed by the self-assembly of complement component 9 (C9). This exceptionally large and cylindrical protein pore is composed of 20 ± 4 monomers of C9 resulting in a diameter of 10 ± 4 nm and an effective pore length of 13 nm.
View Article and Find Full Text PDFIt is challenging to isolate Escherichia albertii from clinical specimens. Therefore, a medium that can selectively grow E. albertii and differentiate it from E.
View Article and Find Full Text PDFEscherichia albertii is an emerging zoonotic pathogen linked to human gastrointestinal illnesses, with poultry meats being considered as a key source of human infections. However, there is little information regarding the distribution and characteristics of this bacterium in Bangladesh. This study investigated the occurrence, antimicrobial resistance, and virulence of E.
View Article and Find Full Text PDFHydroxyapatite (HAP) nano-coatings on titanium alloys (for example, Ti6Al4V) have been used for prosthetic orthopedic implants in recent decades due to their osseointegration, bioactivity, and biocompatibility. HAP is brittle with low mechanical strength and poor adhesion on metallic surfaces, which limits its durability and bioactivity. Surface modification techniques have alleviated the imperfection of biomaterials by coating the substrate.
View Article and Find Full Text PDFSince cefixime and tellurite are known to inhibit most bacteria belonging to Enterobacterales, we found that addition of tellurite inhibited E. albertii growth in Luria Bertani broth but not in tryptic soy broth (TSB), and addition of phosphate and soy peptone enhanced E. albertii growth in TSB in presence of tellurite.
View Article and Find Full Text PDF