In vertebrates, stathmins form a family of proteins possessing two tubulin binding repeats (TBRs), which each binds one soluble tubulin heterodimer. The stathmins thus sequester two tubulins in a phosphorylation-dependent manner, providing a link between signal transduction and microtubule dynamics. In Drosophila, we show here that a single stathmin gene (stai) encodes a family of D-stathmin proteins.
View Article and Find Full Text PDFBackground Information: Precise localization of proteins to specialized subcellular domains is fundamental for proper neuronal development and function. The neural microtubule-regulatory phosphoproteins of the stathmin family are such proteins whose specific functions are controlled by subcellular localization. Whereas stathmin is cytosolic, SCG10, SCLIP and RB3/RB3'/RB3'' are localized to the Golgi and vesicle-like structures along neurites and at growth cones.
View Article and Find Full Text PDFStriatal cholinergic interneurons play a crucial role in the control of movement as well as in motivational and learning aspects of behaviour. Neuropeptides regulate striatal cholinergic transmission and particularly activation of mu opioid receptor (MOR) inhibits acetylcholine (ACh) release in the dorsal striatum. In the present study we investigated whether this cholinergic transmission could be modulated by an enkephalin/MOR direct process.
View Article and Find Full Text PDFStathmin, also referred to as Op18, is a ubiquitous cytosolic phosphoprotein, proposed to be a small regulatory protein and a relay integrating diverse intracellular signaling pathways involved in the control of cell proliferation, differentiation and activities. It interacts with several putative downstream target and/or partner proteins. One major action of stathmin is to interfere with microtubule dynamics, by inhibiting the formation of microtubules and/or favoring their depolymerization.
View Article and Find Full Text PDFStathmin is a ubiquitous cytosolic phosphoprotein, preferentially expressed in the nervous system, and the generic element of a protein family that includes the neural-specific proteins SCG10, SCLIP, and RB3 and its splice variants, RB3' and RB3". All phosphoproteins of the family share with stathmin its tubulin binding and microtubule (MT)-destabilizing activities. To understand better the specific roles of these proteins in neuronal cells, we performed a comparative study of their expression, regulation, and intracellular distribution in embryonic cortical neurons in culture.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.