Tumor extracellular matrices (ECM) exhibit aberrant changes in composition and mechanics compared to normal tissues. Proteoglycans (PG) are vital regulators of cellular signaling in the ECM with the ability to modulate receptor tyrosine kinase (RTK) activation via their sulfated glycosaminoglycan (sGAG) side chains. However, their role on tumor cell behavior is controversial.
View Article and Find Full Text PDFThe use of extracellular matrix (ECM)-derived hydrogels in tissue engineering has become increasingly popular, as they can mimic cells' natural environment in vitro. However, maintaining the native biochemical content of the ECM, achieving mechanical stability, and comprehending the impact of the decellularization process on the mechanical properties of the ECM hydrogels are challenging. Here, a pipeline for decellularization of bovine lung tissue using two different protocols, downstream characterization of the effectiveness of decellularization, fabrication of reconstituted decellularized lung ECM hydrogels and assessment of their mechanical and cytocompatibility properties were described.
View Article and Find Full Text PDFPurpose: This study aims to determine the anti-inflammatory, antioxidant, and anti-apoptotic effects of valproic acid (VPA) on rat spinal cord tissue in ischemia-reperfusion (IR) injury model created by abdominal aorta occlusion.
Materials And Methods: Sprague Dawley rat (male sex) weighing 190-260 g divided into four experimental groups: control only underwent laparotomy, sham group, pre-IR injury (200 mg/kg dose), and post-IR injury (300 mg/kg) VPA. We measured serum levels of TNF-, IL-6, IL-1, IL-18, Total Oxidant Status (TOS) and Total Antioxidant Status (TAS), and serum Oxidative Stress Index (OSI) ratio, and tissue expression of Bax and Bcl2, Caspase3, and Bax/Bcl2 ratio.