Increasing variability down serially segmented structures, such as mammalian molar teeth and vertebrate limb segments, is a much-replicated pattern. The same phenotypic pattern has conflicting interpretations at different evolutionary scales. Macroevolutionary patterns are thought to reflect greater evolutionary potential in later-forming segments, but microevolutionary patterns are thought to reflect less evolutionary potential and greater phenotypic plasticity.
View Article and Find Full Text PDFInvestigating the genetic factors influencing human birth weight may lead to biological insights into fetal growth and long-term health. We report analyses of rare variants that impact birth weight when carried by either fetus or mother, using whole exome sequencing data in up to 234,675 participants. Rare protein-truncating and deleterious missense variants are collapsed to perform gene burden tests.
View Article and Find Full Text PDFPregnancy complicated by maternal obesity contributes to an increased cardiovascular risk in offspring, which is increasingly concerning as the rates of obesity and cardiovascular disease are higher than ever before and still growing. There has been much research in humans and preclinical animal models to understand the impact of maternal obesity on offspring health. This review summarizes what is known about the offspring cardiovascular phenotype, describing a mechanistic role for oxidative stress, metabolic inflexibility, and mitochondrial dysfunction in mediating these impairments.
View Article and Find Full Text PDFMir483 is a conserved and highly expressed microRNA in placental mammals, embedded within the Igf2 gene. Its expression is dysregulated in a number of human diseases, including metabolic disorders and certain cancers. Here, we investigate the developmental regulation and function of Mir483 in vivo.
View Article and Find Full Text PDFSarcopenia is characterised by the loss of skeletal muscle mass and function, which leads to a high risk of increased morbidity and mortality. Maternal malnutrition has been linked to impaired development of skeletal muscle of the offspring; however, there are limited studies that report the long-term effect of a maternal low-protein diet during lactation on the ageing of skeletal muscles. This study aimed to examine how a maternal low-protein diet (LPD) during lactation affects skeletal muscle ageing in the offspring.
View Article and Find Full Text PDF