Publications by authors named "S Ostapchenko"

We provide a compilation of predictions of the QGSJET-II-04m model for the production of secondary species (photons, neutrinos, electrons, positrons, and antinucleons) that are covering a wide range of energies of the beam particles in proton-proton, proton-nucleus, nucleus-proton, and nucleus-nucleus reactions. The current version of QGSJET-II-04m has an improved treatment of the production of secondary particles at low energies: the parameters of the hadronization procedure have been fine-tuned, based on a number of recent benchmark experimental data, notably, from the LHCf, LHCb, and NA61 experiments. Our results for the production spectra are made publicly accessible through the interpolation routines AAfrag which are described below.

View Article and Find Full Text PDF

We apply the phenomenological Reggeon field theory framework to investigate rapidity gap survival (RGS) probability for diffractive dijet production in proton-proton collisions. In particular, we study in some detail rapidity gap suppression due to elastic rescatterings of intermediate partons in the underlying parton cascades, described by enhanced (Pomeron-Pomeron interaction) diagrams. We demonstrate that such contributions play a subdominant role, compared to the usual, so-called "eikonal", rapidity gap suppression due to elastic rescatterings of constituent partons of the colliding protons.

View Article and Find Full Text PDF

Local interstellar spectra (LIS) for protons, helium, and antiprotons are built using the most recent experimental results combined with state-of-the-art models for propagation in the Galaxy and heliosphere. Two propagation packages, GALPROP and HelMod, are combined to provide a single framework that is run to reproduce direct measurements of cosmic-ray (CR) species at different modulation levels and at both polarities of the solar magnetic field. To do so in a self-consistent way, an iterative procedure was developed, where the GALPROP LIS output is fed into HelMod, providing modulated spectra for specific time periods of selected experiments to compare with the data; the HelMod parameter optimization is performed at this stage and looped back to adjust the LIS using the new GALPROP run.

View Article and Find Full Text PDF

A dramatic increase in the accuracy and statistics of space-borne cosmic ray (CR) measurements has yielded several breakthroughs over the last several years. The most puzzling is the rise in the positron fraction above ~10 GeV over the predictions of the propagation models assuming pure secondary production. The accuracy of the antiproton production cross section is critical for astrophysical applications and searches for new physics since antiprotons in CRs seem to hold the keys to many puzzles including the origin of those excess positrons.

View Article and Find Full Text PDF

The concept of the nuclear enhancement factor has been used since the beginning of ray astronomy. It provides a simple and convenient way to account for the contribution of nuclei ( > 1) in cosmic rays (CRs) and in the interstellar medium (ISM) to the diffuse ray emission. An accurate treatment of the dominant emission process, such as hadronic interactions of CRs with the ISM, enables one to study CR acceleration processes and CR propagation in the ISM, and provides a reliable background model for searches of new phenomena.

View Article and Find Full Text PDF