Electron spin resonance (ESR) of diluted Nd(3+) ions in the topologically nontrivial semimetallic (TNSM) YBiPt compound is reported. The cubic YBiPt compound is a non-centrosymmetric half Heusler material which crystallizes in the F43m space group. The low temperature Nd(3+) ESR spectra showed a g-value of 2.
View Article and Find Full Text PDFβ-YbAlB4 has become one of the most studied heavy fermion systems since its discovery due to its remarkable physical properties. This system is the first reported Yb-based heavy-fermion superconductor (HFS) for which the low-T superconducting state emerges from a non-fermi-liquid (NFL) normal state associated with quantum criticality Nakatsuji et al 2008 Nature 4 603. Additionally, it presents a striking and unprecedented electron spin resonance (ESR) signal which behaves as a conduction electron spin resonance (CESR) at high temperatures and acquires features of the Yb(3+) local moment ESR at low temperatures.
View Article and Find Full Text PDFElectron spin resonance (ESR) can probe conduction electrons (CE) and local moment (LM) spin systems in different materials. A CE spin resonance (CESR) is observed in metallic systems based on light elements or with enhanced Pauli susceptibility. LM ESR can be seen in compounds with paramagnetic ions and localized d or f electrons.
View Article and Find Full Text PDFThe Electron Spin Resonance (ESR) of diluted magnetic ions (MI) of Er3+, Yb3+ and Mn2+ in Ag nanoparticles (NPs) is reported. Monodisperse samples of Ag NPs doped with these MI were synthesized by reducing silver nitrate and MI-oxides. This simple method can be extended to all rare-earths.
View Article and Find Full Text PDFThis paper presents the synthesis and characterization of colloidal NaYF4 and NaYF4:20% Gd lanthanide nanocrystals. The nanoparticles were prepared by chemical route using co-thermolysis of Na(CF3COO), Y(CF3COO)3 and Gd(CF3COO)3 precursor in oleylamine surfactant/phenylether at Ts = 250 degrees C. By tuning the precursor/surfactant molar ratio during the process, it was possible to control the crystalline phase, chemical order and size of the nanocrystals.
View Article and Find Full Text PDF