Publications by authors named "S Orthmann"

Doped niobium zirconium oxides are applied in field-effect transistors and as special-purpose coatings. Whereas their material properties are sufficiently known, their crystal structures remain widely uncharacterized. Herein, we report on the comparably mild sol-gel synthesis of NbZrO and the elucidation of its commensurately modulated structure via neutron diffraction.

View Article and Find Full Text PDF

The aim of this study was to prepare amorphous indomethacin nanoparticles in aqueous media and to determine in situ their increased saturation solubility and dissolution rate. Drug nanosuspensions with a Z-average of ∼300 nm were prepared by wet media milling and afterwards freeze-dried. The drug solid state was analyzed by DSC, XRD and FTIR before and after the milling process.

View Article and Find Full Text PDF

The scalable synthesis of phase-pure crystalline manganese nitride (Mn N ) from a molecular precursor is reported. It acts as a superiorly active and durable electrocatalyst in the oxygen evolution reaction (OER) from water under alkaline conditions. While electrophoretically deposited Mn N on fluorine tin oxide (FTO) requires an overpotential of 390 mV, the latter is substantially decreased to merely 270 mV on nickel foam (NF) at a current density of 10 mA cm with a durability of weeks.

View Article and Find Full Text PDF

The aim of this study was to assess whether wet bead milling of dexamethasone and tacrolimus suspensions leads to a lower degree of crystallinity of nanocrystals, and if the degree of crystallinity affects the drug solubility, in addition to particle size. Powder X-ray diffraction (XRD) was used to determine the degree of crystallinity of the particles, which decreased during milling until reaching a plateau: the particles had ∼79% degree of crystallinity after 5 h milling. Different milling times were required for the two drugs in order to reach their plateaux, 2 h for dexamethasone and 3 h for tacrolimus.

View Article and Find Full Text PDF

Charge transport in polymeric graphitic carbon nitrides is shown to proceed via diffusive hopping of electron and hole polarons with reasonably high mobilities >10(-5) cm(2) V(-1) s(-1). The power-law behavior of the ultrafast luminescence decay exhibits that the predominant transport direction is perpendicular to the graphitic polymer sheets, thus complementing 2D materials like graphene.

View Article and Find Full Text PDF