Publications by authors named "S Orio"

Article Synopsis
  • The study aimed to evaluate the prevalence of symptomatic hypoglycemic events and the achievement of HbA1c targets in patients with type 2 diabetes initiating basal insulin treatment.
  • A total of 385 patients were assessed, revealing that 11.9% experienced hypoglycemia, and 31.6% reached their HbA1c target at 24 weeks.
  • Those with hypoglycemia had a lower success rate in achieving glycemic targets compared to those without hypoglycemic events, highlighting a potential risk in managing diabetes with insulin.
View Article and Find Full Text PDF

Amylose forms supramolecular inclusion complexes with polymeric guests in the phosphorylase-catalyzed enzymatic polymerization field, so-called "vine-twining polymerization". However, such inclusion complexes have not exhibited specific properties and processability as functional supramolecular materials. In this study, we found that amylosic inclusion complexes, which were obtained by vine-twining polymerization using a designed guest polymer, that is, an amphiphilic triblock copolymer poly(2-methyl-2-oxazoline--tetrahydrofuran--2-methyl-2-oxazoline), exhibited gel and film formation properties.

View Article and Find Full Text PDF

Amylose is a natural polysaccharide with helical conformation, which spontaneously forms water-insoluble assemblies, such as double helixes and inclusion complexes, at ambient temperatures in aqueous media, whereas it is synthesized as a water-soluble single chain by thermostable phosphorylase-catalyzed enzymatic polymerization at elevated temperatures in aqueous buffer solvents. In this study, we investigated the enzymatic polymerization at 80 °C using a primer-grafted poly(γ-glutamic acid) (PGA) in the presence or absence of poly(l-lactic acid) (PLLA) as a guest polymer for inclusion by amylose. Consequently, the produced amylose-grafted PGAs formed microparticles by cooling the mixtures at room temperature after the enzymatic polymerization in either the presence or the absence of PLLA.

View Article and Find Full Text PDF

Amylose, a natural polysaccharide, acts as a host molecule to form supramolecular inclusion complexes in its enzymatically formation process, that is, phosphorylase-catalyzed enzymatic polymerization using the α-d-glucose 1-phosphate monomer and the maltooligosaccharide primer, in the presence of appropriate guest polymers (vine-twining polymerization). Furthermore, in the vine-twining polymerization using maltooligosaccharide primer-grafted polymers, such as maltoheptaose (G₇)-grafted poly(γ-glutamic acid) (PGA), in the presence of poly(ε-caprolactone) (PCL), the enzymatically elongated amylose graft chains have formed inclusion complexes with PCL among the PGA main-chains to construct supramolecular networks. Either hydrogelation or aggregation as a macroscopic morphology from the products was observed in accordance with PCL/primer feed ratios.

View Article and Find Full Text PDF