Publications by authors named "S Odili"

We performed genome-wide mutagenesis in C57BL/6J mice using N-ethyl-N-nitrosourea to identify mutations causing high blood glucose early in life and to produce new animal models of diabetes. Of a total of 13 new lines confirmed by heritability testing, we identified two semi-dominant pedigrees with novel missense mutations (Gck(K140E) and Gck(P417R)) in the gene encoding glucokinase (Gck), the mammalian glucose sensor that is mutated in human maturity onset diabetes of the young type 2 and the target of emerging anti-hyperglycemic agents that function as glucokinase activators (GKAs). Diabetes phenotype corresponded with genotype (mild-to-severe: Gck(+/+) < Gck(P417R/+), Gck(K140E)(/+) < Gck(P417R/P417R), Gck(P417R/K140E), and Gck(K140E/K140E)) and with the level of expression of GCK in liver.

View Article and Find Full Text PDF

GK (glucokinase) is activated by glucose binding to its substrate site, is inhibited by GKRP (GK regulatory protein) and stimulated by GKAs (GK activator drugs). To explore further the mechanisms of these processes we studied pure recombinant human GK (normal enzyme and a selection of 31 mutants) using steady-state kinetics of the enzyme and TF (tryptophan fluorescence). TF studies of the normal binary GK-glucose complex corroborate recent crystallography studies showing that it exists in a closed conformation greatly different from the open conformation of the ligand-free structure, but indistinguishable from the ternary GK-glucose-GKA complex.

View Article and Find Full Text PDF

Objective: To evaluate the heterogeneity in the clinical expression in a family with glucokinase mature-onset diabetes of the young (GCK-MODY).

Research Design And Methods: Members (three generations) of the same family presented either with overt neonatal hyperglycemia, marked postprandial hyperglycemia, or glucosuria. Homeostasis model assessment of insulin resistance (HOMA(IR)) and insulinogenic and disposition indexes were calculated.

View Article and Find Full Text PDF

Objective: Heterozygous activating mutations of glucokinase have been reported to cause hypoglycemia attributable to hyperinsulinism in a limited number of families. We report three children with de novo glucokinase hyperinsulinism mutations who displayed a spectrum of clinical phenotypes corresponding to marked differences in enzyme kinetics.

Research Design And Methods: Mutations were directly sequenced, and mutants were expressed as glutathionyl S-transferase-glucokinase fusion proteins.

View Article and Find Full Text PDF

Tryptophan fluorescence was used to study GK (glucokinase), an enzyme that plays a prominent role in glucose homoeostasis which, when inactivated or activated by mutations, causes diabetes mellitus or hypoglycaemia in humans. GK has three tryptophan residues, and binding of D-glucose increases their fluorescence. To assess the contribution of individual tryptophan residues to this effect, we generated GST-GK [GK conjugated to GST (glutathione transferase)] and also pure GK with one, two or three of the tryptophan residues of GK replaced with other amino acids (i.

View Article and Find Full Text PDF