Green tissues and seeds from cruciferous vegetables growing in conventional and ecological conditions (Brassica carinata; Brassica rapa; Eruca vesicaria and Sinapis alba) were analyzed to determine their contents of glucosinolates, isotihiocyanates (ITCs) and inorganic micronutrients (Ca, Cr, Cu, Fe, Mn, Ni, Se and Zn), and the bioaccessibility of these compounds. Regarding total contents and bioaccessibility values of these compounds, no clear difference was found between the organic and conventional systems. Glucosinolates bioaccessibility present in green tissues were high, with values around 60-78%.
View Article and Find Full Text PDFIn northwest Spain and Portugal, there is a long tradition of cultivating subsp. to obtain turnip greens and turnip tops. L.
View Article and Find Full Text PDFL. subsp. (turnip greens), a traditionally consumed vegetable, is well-known due to its high content of glucosinolates, which are secondary metabolites with a positive biological activity for human health.
View Article and Find Full Text PDFLeaf samples from five Brassicaceae species (Brassica carinata, Brassica oleracea, Brassica rapa, Eruca vesicaria and Sinapis alba) were analyzed to determine their contents of glucosinolates and trace elements, and the bioaccessibility of these compounds. Considerable variability in the total contents and glucosinolate profiles was observed in the Brassicaceae species, with the total amounts ranging from 8.5 µmol/g dw in Brassica oleracea to 32.
View Article and Find Full Text PDFStandard wet chemistry analytical techniques currently used to determine plant fibre constituents are costly, time-consuming and destructive. In this paper the potential of near-infrared reflectance spectroscopy (NIRS) to analyse the contents of acid detergent fibre (ADF) in turnip greens and turnip tops has been assessed. Three calibration equations were developed: in the equation without mathematical treatment the coefficient of determination () was 0.
View Article and Find Full Text PDF