Soft materials in nature are formed through reversible supramolecular assembly of biological polymers into dynamic hierarchical networks. Rational design has led to self-assembling peptides with structural similarities to natural materials. However, recreating the dynamic functional properties inherent to natural systems remains challenging.
View Article and Find Full Text PDFUnderstanding cellular uptake and particle trafficking within the cells is essential for targeted drug delivery applications. Existing studies reveal that the geometrical aspects of nanocarriers, for example, shape and size, determine their cell uptake and sub-cellular transport pathways. However, considerable efforts have been directed toward understanding the cell uptake mechanism and trafficking of spherical particles.
View Article and Find Full Text PDFLaboratory models of the tumor microenvironment require control of mechanical and biochemical properties to ensure accurate mimicry of patient disease. In contrast to pure natural or synthetic materials, hybrid approaches that pair recombinant protein fragments with synthetic scaffolding show many advantages. Here we demonstrate production of a recombinant bacterial collagen-like protein (CLP) for thiol-ene pairing to norbornene functionalized hyaluronic acid (NorHA).
View Article and Find Full Text PDFMicrobial adhesion to host cells represents the initial step in the infection process. Several methods have been explored to inhibit microbial adhesion including the use of glycopolymers based on mannose, galactose, sialic acid and glucose. These sugar receptors are, however, abundant in the body, and are not unique to bacteria.
View Article and Find Full Text PDFPolymeric nanoparticles with long circulation time hold great promise for anti-cancer drug delivery. An enhanced circulation effect of rod-like micelles has been reported, yet efficient intracellular delivery, especially their interactions with cells during endocytosis, still remains inconsistent. Internalization of rod-like nanoparticles is significantly affected by a number of factors including aspect ratio, stiffness and surface chemistry of nanoparticles.
View Article and Find Full Text PDF