T-cell large granular lymphocyte (T-LGL) leukaemia is characterized by a clonal proliferation of cytotoxic T cells and is frequently associated with rheumatoid arthritis. Sera from some LGL leukaemia patients react to a portion of the human T-cell leukaemia virus (HTLV-1/2) transmembrane envelope protein, BA21, although HTLV-1/2 infection is rare in LGL leukaemia patients. Here we show that family members, including spouses, of an LGL leukaemia patient had elevated LGL counts, BA21 reactivity and, additionally, recognition of HIV-1 gp41.
View Article and Find Full Text PDFLarge granular lymphocyte (LGL) leukemia is a chronic clonal lymphoproliferative disorder. Here, a T-LGL leukemia patient developed NK-LGL leukemia with residual leukemic T-LGL. TCRVβ usage and CDR3 sequence drifts were observed with disease progression.
View Article and Find Full Text PDFLarge granular lymphocyte (LGL) leukemia is characterized by clonal expansion of antigen-activated cytotoxic T cells (CTL). Patients frequently exhibit seroreactivity against a human T-cell leukemia virus (HTLV) epitope, BA21. Aplastic anemia, paroxysmal nocturnal hemoglobinuria and myelodysplastic syndrome are bone marrow failure diseases that can also be associated with similar aberrant CTL activation (LGL-BMF).
View Article and Find Full Text PDFLarge granular lymphocyte (LGL) leukemia results from chronic expansion of cytotoxic T cells or natural killer (NK) cells. Apoptotic resistance resulting from constitutive activation of survival signaling pathways is a fundamental pathogenic mechanism. Recent network modeling analyses identified platelet-derived growth factor (PDGF) as a key master switch in controlling these survival pathways in T-cell LGL leukemia.
View Article and Find Full Text PDF