Differentiated cell nuclei can be reprogrammed after nuclear transfer (NT) to oocytes and the produced NT embryos can give rise to cloned animals. However, development of NT embryos is often hampered by recurrent reprogramming failures, including the incomplete activation of developmental genes, yet specific genes responsible for the arrest of NT embryos are not well understood. Here, we searched for developmentally important genes among the reprogramming-resistant H3K9me3-repressed genes and identified and by siRNA screening.
View Article and Find Full Text PDFMotivation: Aberrant DNA methylation in transcription factor binding sites has been shown to lead to anomalous gene regulation that is strongly associated with human disease. However, the majority of methylation-sensitive positions within transcription factor binding sites remain unknown. Here we introduce SEMplMe, a computational tool to generate predictions of the effect of methylation on transcription factor binding strength in every position within a transcription factor's motif.
View Article and Find Full Text PDFGlycemic control is essential to manage metabolic diseases such as diabetes. Frequent measurements of systemic glucose levels with prompt managements can prevent organ damages. The eye is a glucose highly demanding organ in our body, and the anterior chamber (AC) in the eye has been suggested for a noninvasive blood glucose monitoring site.
View Article and Find Full Text PDFBackground: Zebrafish are a foundational model organism for studying the spatio-temporal activity of genes and their regulatory sequences. A variety of approaches are currently available for editing genes and modifying gene expression in zebrafish, including RNAi, Cre/lox, and CRISPR-Cas9. However, the operator-repressor system, an operon component which has been adapted for use in many other species and is a valuable, flexible tool for inducible modulation of gene expression studies, has not been previously tested in zebrafish.
View Article and Find Full Text PDF