Publications by authors named "S Niewiesk"

Article Synopsis
  • Human parainfluenza virus 3 (HPIV3) infection relies on the combined actions of the hemagglutinin-neuraminidase (HN) and fusion protein (F) to facilitate virus-cell membrane fusion for infection.
  • Unlike laboratory-adapted strains, field strains of HPIV3 have different cleavage motifs for the F protein, which are cleaved by specific, unidentified proteases found in limited cell types.
  • The study highlights that extracellular serine proteases, like TMPRSS2 and TMPRSS13, can activate the F protein for infectious virus release, suggesting that the activation process depends on the availability of these proteases in host cells.
View Article and Find Full Text PDF

Measles virus (MeV) presents a public health threat that is escalating as vaccine coverage in the general population declines and as populations of immunocompromised individuals, who cannot be vaccinated, increase. There are no approved therapeutics for MeV. Neutralizing antibodies targeting viral fusion are one potential therapeutic approach but have not yet been structurally characterized or advanced to clinical use.

View Article and Find Full Text PDF

Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus responsible for adult T-cell leukemia/lymphoma, a severe and fatal CD4+ T-cell malignancy. Additionally, HTLV-1 can lead to a chronic progressive neurodegenerative disease known as HTLV-1-associated myelopathy/tropical spastic paraparesis. Unfortunately, the prognosis for HTLV-1-related diseases is generally poor, and effective treatment options are limited.

View Article and Find Full Text PDF

Human T-cell leukemia virus type 1 (HTLV-1) is the etiologic cause of adult T-cell leukemia/lymphoma (ATL) and encodes a viral oncoprotein (Hbz) that is consistently expressed in asymptomatic carriers and ATL patients, suggesting its importance in the development and maintenance of HTLV-1 leukemic cells. Our previous work found Hbz protein is dispensable for virus-mediated T-cell immortalization but enhances viral persistence. We and others have also shown that hbz mRNA promotes T-cell proliferation.

View Article and Find Full Text PDF

The development of "humanized" mice has become a prominent tool for translational animal studies of human diseases. Immunodeficient mice can be humanized by injections of human umbilical cord stem cells. The engraftment of these cells and their development into human lymphocytes has been made possible by the development of novel severely immunodeficient mouse strains.

View Article and Find Full Text PDF