Publications by authors named "S Nemsak"

Functionalization and volatilization are competing reactions during the oxidation of carbonaceous materials and are important processes in many different areas of science and technology. Here, we present a combined ambient pressure X-ray photoelectron spectroscopy (APXPS) and grazing incidence X-ray scattering (GIXS) investigation of the oxidation of oleic acid ligands surrounding NaYF nanoparticles (NPs) deposited onto SiO/Si substrates. While APXPS monitors the evolution of the oxidation products, GIXS provides insight into the morphology of the ligands and particles before and after the oxidation.

View Article and Find Full Text PDF

Exsolution reactions enable the synthesis of oxide-supported metal nanoparticles, which are desirable as catalysts in green energy conversion technologies. It is crucial to precisely tailor the nanoparticle characteristics to optimize the catalysts' functionality, and to maintain the catalytic performance under operation conditions. We use chemical (co)-doping to modify the defect chemistry of exsolution-active perovskite oxides and examine its influence on the mass transfer kinetics of Ni dopants towards the oxide surface and on the subsequent coalescence behavior of the exsolved nanoparticles during a continuous thermal reduction treatment.

View Article and Find Full Text PDF

The molecular distribution at the liquid-vapor interface and evolution of the hydrogen bond interactions in mixtures of glycerol and choline chloride are investigated using X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Nanoscale depth profiles of supersaturated deep eutectic solvent (DES) mixtures up to ∼2 nm measured by ambient-pressure XPS show the enhancement of choline cation (Ch) concentration by a factor of 2 at the liquid-vapor interface compared to the bulk. In addition, Raman spectral analysis of a wide range of DES mixtures reveals the conversion of gauche-conformer Ch into the anti-conformer in relatively lower ChCl concentrations.

View Article and Find Full Text PDF

Noble metals supported on reducible oxides, like CoO and TiO, exhibit superior activity in many chemical reactions, but the origin of the increased activity is not well understood. To answer this question we studied thin films of CoO supported on an Au(111) single crystal surface as a model for the CO oxidation reaction. We show that three reaction regimes exist in response to chemical and topographic restructuring of the CoO catalyst as a function of reactant gas phase CO/O stoichiometry and temperature.

View Article and Find Full Text PDF

This study investigates the oxidation state of ceria thin films' surface and subsurface under 100 mTorr hydrogen using ambient pressure X-ray photoelectron spectroscopy. We examine the influence of the initial oxidation state and sample temperature (25-450 °C) on the interaction with hydrogen. Our findings reveal that the oxidation state during hydrogen interaction involves a complex interplay between oxidizing hydride formation, reducing thermal reduction, and reducing formation of hydroxyls followed by water desorption.

View Article and Find Full Text PDF