Nidogen 1 and 2 are basement membrane glycoproteins, and previous biochemical and functional studies indicate that they may play a crucial role in basement membrane assembly. While they show a divergent expression pattern in certain adult tissues, both have a similar distribution during development. Gene knockout studies in mice demonstrated that the loss of either isoform has no effect on basement membrane formation and organ development, suggesting complementary functions.
View Article and Find Full Text PDFTransgenic and knockout models have been used successfully in order to attribute specific functions to distinct growth factors. However, it is not clear which from the different IGF-components are actually altered when growth is affected. Furthermore it is not clear if unique or redundant patterns of IGF-component expression are present under conditions of elevated or reduced growth.
View Article and Find Full Text PDFInsulin-like growth factor-binding protein-2 (IGFBP-2) has been suggested to be a negative regulator of bone growth and maintenance. The objective of this study was to characterize the effect of elevated IGFBP-2 on the skeletal phenotype of adult transgenic mice, in the absence and presence of growth hormone (GH) excess. 43 male mice were examined at an age of 4 months (7 IGFBP-2 transgenic mice, 12 GH transgenic mice, 10 mice carrying both transgenes, and 14 controls).
View Article and Find Full Text PDFGH and IGF-I are capable of inducing cellular hypertrophy and/or hyperplasia. Chronic overexpression of GH in transgenic mice results in systemically and locally increased IGF-I levels and in disproportionate overgrowth, including adrenocortical enlargement and corticosterone hypersecretion. Using PEPCK-bovine GH transgenic (G) mice, we demonstrate that adrenal enlargement involves both hypertrophy (44%) and hyperplasia (50%) of zona fasciculata cells.
View Article and Find Full Text PDFNidogens are highly conserved proteins in vertebrates and invertebrates and are found in almost all basement membranes. According to the classical hypothesis of basement membrane organization, nidogens connect the laminin and collagen IV networks, so stabilizing the basement membrane, and integrate other proteins. In mammals two nidogen proteins, nidogen-1 and nidogen-2, have been discovered.
View Article and Find Full Text PDF