Publications by authors named "S Neb"

We describe an ultrafast transition of the electronic response of optically excited transition metal β-tungsten with few-femtosecond time resolution. The response moves from a regime where state filling of the excited carrier population around the Fermi level dominates towards localization of carriers onto the outer d orbitals. This is in contrast to previous measurements using ultrafast element-specific core-level spectroscopy enabled by attosecond transient absorption spectroscopy on transition metals such as titanium and around the transition metal atom in transition metal dichalchogenides MoTe_{2} and MoSe_{2}.

View Article and Find Full Text PDF

The coupling of light to electrical charge carriers in semiconductors is the foundation of many technological applications. Attosecond transient absorption spectroscopy measures simultaneously how excited electrons and the vacancies they leave behind dynamically react to the applied optical fields. In compound semiconductors, these dynamics can be probed via any of their atomic constituents with core-level transitions into valence and conduction band.

View Article and Find Full Text PDF

Attosecond time-resolved photoemission spectroscopy reveals that photoemission from solids is not yet fully understood. The relative emission delays between four photoemission channels measured for the van der Waals crystal tungsten diselenide (WSe) can only be explained by accounting for both propagation and intra-atomic delays. The intra-atomic delay depends on the angular momentum of the initial localized state and is determined by intra-atomic interactions.

View Article and Find Full Text PDF