Publications by authors named "S Navet"

Pax genes play important roles in Metazoan development. Their evolution has been extensively studied but Lophotrochozoa are usually omitted. We addressed the question of Pax paralog diversity in Lophotrochozoa by a thorough review of available databases.

View Article and Find Full Text PDF

Cephalopods possess the most complex centralized nervous system among molluscs and the molecular determinants of its development have only begun to be explored. To better understand how evolved their brain and body axes, we studied Sepia officinalis embryos and investigated the expression patterns of neural regionalization genes involved in the mediolateral patterning of the neuroectoderm in model species. SoxB1 expression reveals that the embryonic neuroectoderm is made of several distinct territories that constitute a large part of the animal pole disc.

View Article and Find Full Text PDF

The ability to respond to hyperosmotic stress is one of the numerous conserved cellular processes that most of the organisms have to face during their life. In metazoans, some peptides belonging to the FMRFamide-like peptide (FLP) family were shown to participate in osmoregulation via regulation of ion channels; this is, a well-known response to hyperosmotic stress in plants. Thus, we explored whether FLPs exist and regulate osmotic stress in plants.

View Article and Find Full Text PDF

New molecular resources regarding the so-called “non-standard models” in biology extend the present knowledge and are essential for molecular evolution and diversity studies (especially during the development) and evolutionary inferences about these zoological groups, or more practically for their fruitful management. Sepia officinalis, an economically important cephalopod species, is emerging as a new lophotrochozoan developmental model. We developed a large set of expressed sequence tags (ESTs) from embryonic stages of S.

View Article and Find Full Text PDF

Cephalopods show a very complex nervous system, particularly derived when compared to other molluscs. In vertebrates, the setting up of the nervous system depends on genes such as Shh and Pax6. In this paper we assess Shh and Pax6 expression patterns during Sepia officinalis development by whole-mount in situ hybridization.

View Article and Find Full Text PDF