Knowledge on the distribution and dynamics of glycosylation enzymes in the Golgi is essential for better understanding this modification. Here, using a combination of CRISPR/Cas9 knockin technology and super-resolution microscopy, we show that the Golgi complex is assembled by a number of small 'Golgi units' that have 1-3 μm in diameter. Each Golgi unit contains small domains of glycosylation enzymes which we call 'zones'.
View Article and Find Full Text PDFHuman serum amyloid A (SAA) is a precursor protein involved in AA amyloidosis. The N-terminal region of the SAA molecule is crucial for amyloid fibril formation, and therefore modifications in this region are considered to influence the pathogenesis of AA amyloidosis. In the present study, using the N-terminal peptide corresponding to the putative first helix region of the SAA molecule, we investigated the influences of N-terminal modifications on amyloid fibril formation.
View Article and Find Full Text PDFChondroitin sulfate (CS), a linear acidic polysaccharide, exhibits numerous biological activities that are dependent on sulfation patterns. CS oligosaccharides comprise repeating disaccharide units with different (hetero)-type sulfation patterns and are common in nature. We herein report the synthesis of the following biotinylated CS tetrasaccharides: CS-AD [βGalNAc4S(1-4)βGlcA(1-3)βGalNAc6S(1-4)βGlcA2S] and CS-DA [βGalNAc6S(1-4)βGlcA2S(1-3)βGalNAc4S(1-4)βGlcA], in a stereo-controlled manner.
View Article and Find Full Text PDFBackground And Purpose: Chondroitin sulfate proteoglycan (CSPG) constitutes the neurogenic niche in the hippocampus. The reduction of hippocampal neurogenesis is involved in ageing-related cognitive decline and dementia. The purpose of this study is to find candidates that improve cognitive function by analysing the effects of memantine (MEM), a therapeutic agent for Alzheimer's disease, on CSPG and adult hippocampal neurogenesis.
View Article and Find Full Text PDFExtracellular and cell surface chondroitin sulfates (CSs) regulate cancer cell properties, including proliferation and invasion. Thus, it is necessary to understand the mechanisms underlying their roles in cancer. Although we have shown that CS has an inherent ability to enhance the invasive activity of the human triple-negative breast cancer cell line MDA-MB-231, its molecular mechanism remains elusive.
View Article and Find Full Text PDF