Publications by authors named "S N Smirnov"

High-energy nuclear collisions create a quark-gluon plasma, whose initial condition and subsequent expansion vary from event to event, impacting the distribution of the eventwise average transverse momentum [P([p_{T}])]. Disentangling the contributions from fluctuations in the nuclear overlap size (geometrical component) and other sources at a fixed size (intrinsic component) remains a challenge. This problem is addressed by measuring the mean, variance, and skewness of P([p_{T}]) in ^{208}Pb+^{208}Pb and ^{129}Xe+^{129}Xe collisions at sqrt[s_{NN}]=5.

View Article and Find Full Text PDF

Background: Following proteolytic activation, activated blood coagulation factor (F)VIII (FVIIIa) binds to activated platelet membranes, forming the intrinsic tenase complex with activated FIX (FIXa). Previous studies have identified the C1 and C2 domains as the membrane binding domains of FVIII through conserved arginine residues. A membrane binding model for the FVIII C domains proposes that surface-exposed hydrophobic and positively charged residues at each C domain interact with the membrane, yet a comprehensive thermodynamic and structural description of this interaction is lacking.

View Article and Find Full Text PDF

Next-generation sequencing technologies have not only defined a breakthrough in medical genetics, but also been able to enter routine clinical practice to determine individual genetic susceptibilities. Modern technological developments are routinely introduced to genetic analysis overtaking the established approaches, potentially raising a number of challenges. To what extent is the advantage of new methodologies in synthetic metrics, such as precision and recall, more important than stability and reproducibility? Could differences in the technical protocol for calling variants be crucial to the diagnosis and, by extension, the patient's treatment strategy? A regulatory review process may delay the incorporation of potentially beneficial technologies, resulting in missed opportunities to make the right medical decisions.

View Article and Find Full Text PDF

A search for the exclusive hadronic decays W^{±}→π^{±}γ, W^{±}→K^{±}γ, and W^{±}→ρ^{±}γ is performed using up to 140  fb^{-1} of proton-proton collisions recorded with the ATLAS detector at a center-of-mass energy of sqrt[s]=13  TeV. If observed, these rare processes would provide a unique test bench for the quantum chromodynamics factorization formalism used to calculate cross sections at colliders. Additionally, at future colliders, these decays could offer a new way to measure the W boson mass through fully reconstructed decay products.

View Article and Find Full Text PDF
Article Synopsis
  • - The ATLAS experiment at the LHC conducted a search for long-lived particles (LLPs) using a large dataset (140 fb^{-1}) from proton-proton collisions at 13 TeV, focusing on LLPs with masses from 5 to 55 GeV that decay within the inner detector.
  • - The study considered scenarios where LLPs are produced from exotic Higgs boson decays and models involving axionlike particles (ALPs).
  • - No significant findings above expected background levels were detected, leading to the establishment of upper limits on various production rates involving the Higgs boson and the top quark related to LLPs and ALPs.
View Article and Find Full Text PDF