Publications by authors named "S N Haber"

Obsessive-compulsive disorder is a psychiatric disorder characterized by intrusive thoughts and repetitive behaviors. There are two prominent features: Harm Avoidance (HA) and Incompleteness (INC). Previous resting-state studies reported abnormally elevated connectivity between prefrontal cortical (PFC) and subcortical regions (thalamus, striatum) in OCD participants.

View Article and Find Full Text PDF

Corticostriatal connections are essential for motivation, cognition, and behavioral flexibility. There is broad interest in using resting-state functional magnetic resonance imaging (rs-fMRI) to link circuit dysfunction in these connections with neuropsychiatric disorders. In this paper, we used tract-tracing data from non-human primates (NHPs) to assess the likelihood of monosynaptic connections being represented in rs-fMRI data of NHPs and humans.

View Article and Find Full Text PDF

Plastics redesign for circularity has primarily focused on monomer chemistries enabling faster deconstruction rates concomitant with high monomer yields. Yet, during deconstruction, polymer chains interact with their reaction medium, which remains underexplored in polymer reactivity. Here, we show that, when plastics are deconstructed in reaction media that promote swelling, initial rates are accelerated by over sixfold beyond those in small-molecule analogs.

View Article and Find Full Text PDF

fMRI neurofeedback using autobiographical memory recall to upregulate the amygdala is associated with resting-state functional connectivity (rsFC) changes between the amygdala and the salience and default mode networks (SN and DMN, respectively). We hypothesize the existence of anatomical circuits underlying these rsFC changes. Using a cross-species brain parcellation, we identified in non-human primates locations homologous to the regions of interest (ROIs) from studies showing pre-to-post-neurofeedback changes in rsFC with the left amygdala.

View Article and Find Full Text PDF

Axon diameter and myelin thickness are closely related microstructural tissue properties that affect the conduction velocity of action potentials in the nervous system. Imaging them non-invasively with MRI-based methods is thus valuable for studying brain microstructure and function. However, the relationship between MRI-based axon diameter and myelination measures has not been investigated across the brain, mainly due to methodological limitations in estimating axon diameters.

View Article and Find Full Text PDF