The spectral characteristics of cyclosporin C (CsC) with the addition of Dy ions in acetonitrile (CDCN) and CsC with Dy incorporated into dodecylphosphocholine (DPC) micelle in deuterated water were investigated by high-resolution NMR spectroscopy. The study was focused on the interaction between Dy ions and CsC molecules in different environments. Using a combination of one-dimensional and two-dimensional NMR techniques, we obtained information on the spatial features of the peptide molecule and the interaction between CsC and the metal ion.
View Article and Find Full Text PDFWe have studied the effect of calcium ions (Ca) at various concentrations on the structure of lipid vesicles in the presence of amyloid-beta peptide Aβ(25-35). In particular, we have investigated the influence of calcium ions on the formation of recently documented bicelle-like structures (BLSs) emerged as a result of Aβ(25-35) triggered membrane disintegration. First, we have shown by using small-angle X-ray and neutron scattering that peptide molecules rigidify the lipid bilayer of gel phase DPPC unilamellar vesicles (ULVs), while addition of the calcium ions to the system hinders this effect of Aβ(25-35).
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2023
Cyclosporin is an 11-amino acid cyclic peptide with pharmacologically valuable properties which has a variety of actual and potential applications. Its activity relies on the cell membrane permeability which, in turn, depends on the structure of cyclosporin and its ability to change the conformation. In this work, conformational exchange processes occurring in cyclosporin C were studied using one- and two-dimensional nuclear magnetic resonance spectroscopy.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
January 2024
Our complementary experimental data and molecular dynamics (MD) simulations results reveal the structure of previously observed lipid bicelle-like structures (BLSs) formed in the presence of amyloid-beta peptide Aβ(25-35) below the main phase transition temperature (T) of saturated phosphatidylcholine lipids and small unilamellar vesicles (SUVs) above this temperature. First, we show by using solid-state P nuclear magnetic resonance (NMR) spectroscopy that our BLSs being in the lipid gel phase demonstrate magnetic alignment along the magnetic field of NMR spectrometer and undergo a transition to SUVs in the lipid fluid phase when heated through the T. Secondly, thanks to the BLS alignment we present their lipid structure.
View Article and Find Full Text PDF