Background: Respiratory viral infections are a major public health challenge and the most diagnosed medical condition, particularly for individuals living in close proximity, like military personnel. We compared the sensitivity and specificity of the Biomeme Franklin and Truelab RT-PCR thermocyclers to determine which platform is more sensitive and specific at detecting SARS-CoV-2 and influenza A and B viruses.
Methodology: RNA extracted from nasopharyngeal swabs of infected and uninfected individuals was tested on the Biomeme Franklin at Lackland and the Truelab at Wright Patterson Air Force bases.
Introduction: Comorbidities such as hypertension, diabetes mellitus, asthma, and cardiovascular conditions have been reported to worsen the clinical progression of coronavirus disease 2019 (COVID-19) and related hospitalizations. Furthermore, the COVID-19 pandemic has disproportionately affected the historically marginalized groups, i.e.
View Article and Find Full Text PDFIntroduction: Basic military trainee (BMT) gas mask training poses a potential mechanism of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) transmission. After training, gas masks are decontaminated. Insufficient decontamination can lead to viral transmission in the next training class.
View Article and Find Full Text PDFWe evaluated the sensitivity and specificity of the Biomeme Franklin™ three9 Real-Time PCR Thermocycler and Biomeme SARS-CoV-2 Go-Strips in the detection of SARS-CoV-2. The Biomeme Franklin™ three9 platform is a portable, battery-operated system that could be used in remote settings. We assessed performance of the Biomeme SARS-CoV-2 detection system at a wide range of viral concentrations, examined cross-reactivity of the SARS-CoV-2 Go-Strips against several near-neighbor respiratory pathogens, and evaluated agreement against the BioFire® Respiratory Panel 2.
View Article and Find Full Text PDF