Hypertension is a major, established risk factor for atherosclerosis. How it interacts to exacerbate the cellular processes involved in atherogenesis is unclear. This initial, preliminary study examined how hydrostatic pressure influenced the formation of foam cells from human macrophages exposed to low-density lipoprotein (LDL) or oxidized LDL (OxLDL).
View Article and Find Full Text PDFInt J Biochem Cell Biol
September 2006
1,25-Dihydroxyvitamin D(3) has a pivotal role in bone resorption and osteoclast activity. As activated macrophages are known to synthesise 1,25-dihydroxyvitamin D(3), this study examined whether pressure modulated its synthesis. Pressure and particles have been shown to increase synthesis of pro-resorptive cytokines and other factors by cultured macrophages.
View Article and Find Full Text PDFBackground: Cyclic hydrostatic pressure within bone has been proposed both as a stimulus of aseptic implant loosening and associated bone resorption and of bone formation. We showed previously that cyclical hydrostatic pressure influenced macrophage synthesis of several factors linked to osteoclastogenesis. The osteoprotegerin/soluble receptor activator of NF-kappa beta ligand /receptor activator of NF-kappa beta (OPG/ RANKL/ RANK) triumvirate has been implicated in control of bone resorption under various circumstances.
View Article and Find Full Text PDFPseudovitamin D-defiency rickets (PDDR) is an autosomal recessive disorder characterized by hypocalcemia, rickets (which are resistant to treatment with vitamin D), and low or undetectable serum levels of 1,25-dihydroxyvitamin D (1,25(OH)2D). The symptoms are corrected with 1,25(OH)2D treatment, and the disease is now believed to result from a defect in the cytochrome P450 component (P450c1; CYP27B1) of the renal 25-hydroxyvitamin D-1alpha-hydroxylase (1-OHase). We have studied genomic DNA from three families with PDDR and have identified the same homozygous mutation in the P450c1 gene in two of the index cases, causing a frameshift in exon 8, resulting in a premature stop codon in the heme-binding domain.
View Article and Find Full Text PDF