Two fatty acid binding proteins (FABPs) were isolated from Swiss Webster mouse brains. Neither protein cross-reacted with antisera to recombinant liver L-FABP. One protein, designated brain H-FABP, migrated on tricine sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) as a single band at 14.
View Article and Find Full Text PDFMol Cell Biochem
February 1996
Relatively little is known of fatty acid specificity in cellular fatty acid uptake. In this study L-cells, a fibroblastic cell line with very low levels of endogenous cytosolic fatty acid binding protein, were used to examine the role of cis and trans unsaturation on fatty acid uptake. The fluorescent fatty acids, trans-parinaric acid and cis-parinaric acid, were used as analogs of straight-chain saturated, and kinked-chain unsaturated fatty acids, respectively, in order to evaluate the fatty acid specificity of the uptake system.
View Article and Find Full Text PDFAlthough lipids are essential to brain function, almost nothing is known of lipid transfer proteins in the brain. Early reports indicates cross-reactivity of brain proteins with antisera against two native liver sterol transfer proteins, sterol carrier protein-2 (SCP-2) and the liver form of fatty acid-binding protein (L-FABP). Herein, polyclonal antibodies raised against the recombinant liver sterol transfer proteins SCP-2 and L-FABP were used to identify the lipid transfer proteins in the brains of alcohol-treated and control mice.
View Article and Find Full Text PDFDirect effects of ethanol on the interaction of cytosolic lipid transfer proteins with ligands are not known. In this study, recombinant liver fatty acid binding protein (L-FABP) and sterol carrier protein-2 (SCP-2) were used in conjunction with a series of fluorescent fatty acid probe molecules to compare the relative dielectric properties of the ligand binding sites and to examine the effects of ethanol in vitro on ligand interaction with these proteins. L-FABP and SCP-2 exhibited broad but distinct ligand specificities.
View Article and Find Full Text PDFThe interaction of human recombinant sterol carrier protein-2 (SCP-2) with sterols was examined. Two independent ligand binding methods, Lipidex 1000 binding of [3H]cholesterol and a fluorescent dehydroergosterol binding assay, were used to determine the affinity of SCP-2 for sterols. Binding analysis indicated SCP-2 bound [3H]cholesterol and dehydroergosterol with a Kd of 0.
View Article and Find Full Text PDF