A new design of membraneless gas-diffusion unit with dual acceptor channels for separation, collection and simultaneous determination of two volatile analytes in liquid sample is presented. The unit is comprised of three parallel channels in a closed module. A sample is aspirated into the central channel and two kinds of reagents are introduced into the other two channels.
View Article and Find Full Text PDFAn advanced stopped-in-loop flow analysis (SILFA) is proposed for the catalytic determinations of vanadium and iron. The chemistry relies on a vanadium- or iron-catalyzed oxidative reaction of p-anisidine by bromate or hydrogen peroxide in the presence of an activator (Tiron or 1,10-phenanthlorine) to form a red dye (510 nm). Reagents for the vanadium- or iron-catalyzed reaction are well mixed by a reagents-merging zones technique.
View Article and Find Full Text PDFA novel four-channel simultaneous injection effective mixing flow analysis (SIEMA) system has been assembled for successive determination of bilirubin and creatinine in urinary samples. The chemical variables and physical parameters in the flow system were optimized for the enhancement of successive analytical performances. The interferences from urine matrices on the determination of bilirubin and creatinine were eliminated to dilute urine samples.
View Article and Find Full Text PDFThe thermoacidophilic iron-oxidizing archaeon Acidianus brierleyi is a microorganism that could be useful in the removal of inorganic As from wastewater, because it simultaneously oxidizes As(III) and Fe(II) to As(V) and Fe(III) in an acidic culture medium, resulting in the immobilization of As(V) as FeAsO₄. To investigate the oxidation mechanism, speciation of the As species in both the cells and its culture media is an important issue. Here we describe the successive determination of As(III), As(V), and total As in A.
View Article and Find Full Text PDFAn automated method has been developed for determining the concentration of inorganic arsenic. The technique uses sequential injection/anodic stripping voltammetry with a long-lasting gold-modified screen-printed carbon electrode. The long-lasting gold electrode was electrochemically deposited onto a screen-printed carbon electrode at a potential of -0.
View Article and Find Full Text PDF