Publications by authors named "S Mosor"

We report a novel hemispherical micro-cavity that is comprised of a planar integrated semiconductor distributed Bragg reflector (DBR) mirror, and an external, concave micro-mirror having a radius of curvature 50 microm. The integrated DBR mirror containing quantum dots (QD), is designed to locate the QDs at an antinode of the field in order to maximize the interaction between the QD and cavity. The concave micro-mirror, with high-reflectivity over a large solid-angle, creates a diffraction-limited (sub-micron) mode-waist at the planar mirror, leading to a large coupling constant between the cavity mode and QD.

View Article and Find Full Text PDF

The lack of translational invariance perpendicular to the plane of a single quantum well causes equal probability for spontaneous emission to the left or right. Combining one emission path from the left and one from the right into a common detector leads to interference fringes for fundamentally indistinguishable paths corresponding to geometries where the same in-plane momentum is transferred to the quantum well. For all other paths, no interference is observed because of the entanglement between the photon and extended Bloch states of the many-body system.

View Article and Find Full Text PDF

Time-resolved photoluminescence spectra after nonresonant excitation show a distinct 1s resonance, independent of the existence of bound excitons. A microscopic analysis identifies exciton and electron-hole plasma contributions. For low temperatures and low densities, the excitonic emission is extremely sensitive to details of the electron-hole-pair population making it possible to identify even minute fractions of optically active excitons.

View Article and Find Full Text PDF