Publications by authors named "S Moralee"

Stroke represents an attractive target for stem cell therapy. Although different types of cells have been employed in animal models, a direct comparison between cell sources has not been performed. The aim of our study was to assess the effect of human multipotent adult progenitor cells (hMAPCs) and human mesenchymal stem cells (hMSCs) on endogenous neurogenesis, angiogenesis and inflammation following stroke.

View Article and Find Full Text PDF

Background: Stroke models are essential tools in experimental stroke. Although several models of stroke have been developed in a variety of animals, with the development of transgenic mice there is the need to develop a reliable and reproducible stroke model in mice, which mimics as close as possible human stroke.

Methods: BALB/Ca-RAG2-/-γc-/- mice were subjected to cauterization or thrombosis stroke model and sacrificed at different time points (48hr, 1wk, 2wk and 4wk) after stroke.

View Article and Find Full Text PDF

Neurons are highly dependent on astrocyte survival during brain damage. To identify genes involved in astrocyte function during ischemia, we performed mRNA differential display in astrocytes after oxygen and glucose deprivation (OGD). We detected a robust down-regulation of S6 kinase 1 (S6K1) mRNA that was accompanied by a sharp decrease in protein levels and activity.

View Article and Find Full Text PDF

Contrarily to neurons, astrocytes can survive short periods of ischemia. We have searched for genes implicated in astrocyte resistance to ischemia using oxygen and glucose deprivation (OGD) as a stroke model. A RNA differential display approach uncovered the OGD induction of selenoprotein-S-encoding gene SEPS1.

View Article and Find Full Text PDF

The quantitative analysis of spiral ganglion cells is important in assessing the biological safety of cochlear implants. Quantitative analysis of ganglion cells in a histological section is conventionally expressed as cell density, the number of ganglion cells within Rosenthal's canal being divided by its area. The area of Rosenthal's canal conventionally excludes the area of blood vessels within it.

View Article and Find Full Text PDF