We have developed approaches for the cloning of minisatellites from total genomic libraries and applied these approaches to the human, rat, and pig genomes. The chromosomal distribution of minisatellites in the three genomes is strikingly different, with clustering at chromosome ends in human, a seemingly almost even distribution in rat, and an intermediate situation in pig. A closer analysis, however, reveals that interstitial sites in pig and rat often correspond to terminal cytogenetic bands in human.
View Article and Find Full Text PDFThe recent spreading of a subtelomeric region at nine different human chromosome ends was characterized by a combination of segregation analyses, physical mapping, junction cloning, and FISH investigations. The events occurred very recently in human genome evolution as demonstrated by sequence analysis of different alleles and the single location of the ancestral site at chromosome 17qter in chimpanzee and orangutan. The domain successfully colonized most 1p, 5q, and 6q chromosome ends and is also present at a significant frequency of 6p, 7p, 8p, 11p, 15q, and 19p ends.
View Article and Find Full Text PDFMeiotic breakpoint panels for human chromosomes 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 17, 18, 20 and X were constructed from genotypes from the CEPH reference families. Each recombinant chromosome included has a breakpoint well-supported with reference to defined quantitative criteria. The panels were constructed at both a low-resolution, useful for a first-pass localization, and high-resolution, for a more precise placement.
View Article and Find Full Text PDF