Matrix metalloproteinases (MMPs) have been proposed to remodel the extracellular environment of neurons. Here, we report that the metalloproteinase membrane-type 5 MMP (MT5-MMP) binds to AMPA receptor binding protein (ABP) and GRIP (glutamate receptor interaction protein), two related postsynaptic density (PSD) PDZ (postsynaptic density-95/Discs large/zona occludens-1) domain proteins that target AMPA receptors to synapses. The MT5-MMP C terminus binds ABP PDZ5 and the two proteins coimmunoprecipitated and colocalized in heterologous cells and neurons.
View Article and Find Full Text PDFMembrane-type 1 matrix metalloproteinase (MT1-MMP) has been implicated as a physiological activator of progelatinase A (MMP-2). We previously reported that plasmin treatment of cells results in proMMP-2 activation and increased type IV collagen degradation. Here, we analyzed the role of MT1-MMP in plasmin activation of MMP-2 using HT-1080 cells transfected with MT1-MMP sense or antisense cDNA.
View Article and Find Full Text PDFGelatinase A (MMP-2), a matrix metalloproteinase (MMP) involved in tumor invasion and angiogenesis, is secreted as an inactive zymogen (proMMP-2) and activated by proteolytic cleavage. Here we report that polymorphonuclear neutrophil (PMN)-derived elastase, cathepsin G, and proteinase-3 activate proMMP-2 through a mechanism that requires membrane-type 1 matrix metalloproteinase (MT1-MMP) expression. Immunoprecipitation of human PMN-conditioned medium with a mixture of antibodies to elastase, cathepsin G, and proteinase-3 abolished proMMP-2 activation, whereas individual antibodies were ineffective.
View Article and Find Full Text PDFBackground: Matrix metalloproteinase-2 degrades a variety of basement membrane components and is essential for tumor invasion. We have previously reported that membrane type-1 matrix metalloproteinase (MT1-MMP) cooperates with neutrophil-derived serine proteinases (NDPs; elastase, cathepsin G, protease-3) to activate matrix metalloproteinase-2. We therefore hypothesized that NDPs enhance tumor-cell invasion.
View Article and Find Full Text PDF