Publications by authors named "S Molas"

The selection of appropriate defensive behaviors in the face of potential threat is fundamental to survival. However, after repeated exposures to threatening stimuli that did not signal real danger, an animal must learn to adjust and optimize defensive behaviors. Despite extensive research on innate threat processing, little is known how individuals change their defensive behaviors when presented with recurrent threat exposures without evidence of a real risk.

View Article and Find Full Text PDF

Alcohol consumption remains a significant global health challenge, causing millions of direct and indirect deaths annually. Intriguingly, recent work has highlighted the prefrontal cortex, a major brain area that regulates inhibitory control of behaviors, whose activity becomes dysregulated upon alcohol abuse. However, whether an endogenous mechanism exists within this brain area that limits alcohol consumption is unknown.

View Article and Find Full Text PDF

A social memory pathway connecting the ventral hippocampus, the lateral septum and the ventral tegmental area helps to regulate how mice react to unknown individuals.

View Article and Find Full Text PDF

Animals are inherently motivated to explore social novelty cues over familiar ones, resulting in a novelty preference (NP), although the behavioral and circuit bases underlying NP are unclear. Combining calcium and neurotransmitter sensors with fiber photometry and optogenetics in mice, we find that mesolimbic dopamine (DA) neurotransmission is strongly and predominantly activated by social novelty controlling bout length of interaction during NP, a response significantly reduced by familiarity. In contrast, interpeduncular nucleus (IPN) GABAergic neurons that project to the lateral dorsal tegmentum (LDTg) were inhibited by social novelty but activated during terminations with familiar social stimuli.

View Article and Find Full Text PDF

Stress coping involves innate and active motivational behaviors that reduce anxiety under stressful situations. However, the neuronal bases directly linking stress, anxiety, and motivation are largely unknown. Here, we show that acute stressors activate mouse GABAergic neurons in the interpeduncular nucleus (IPN).

View Article and Find Full Text PDF