Publications by authors named "S Misler"

Biphasic insulin secretion in response to glucose consists of a transient first phase followed by a progressive second phase. It is a well described feature of whole perfused pancreases as well as isolated pancreatic islets of Langerhans. Applying to single cell assays of exocytosis (capacitance monitoring and amperometry) to single canine Beta-cells we have examined the time courses of granule exocytosis in response to voltage-clamp depolarizations that mimic two modes of glucose-induced electrical activity, and then compared these to biphasic insulin secretion.

View Article and Find Full Text PDF

Over the past three decades the pancreatic islet of Langerhans has taken center stage as an endocrine micro-organ whose glucoregulatory function is highly explicable on the basis of the increasingly well understood activities of three highly interactive secretory cells. Islet dysfunction underlies both type 1 and type 2 diabetes mellitus (DM); its protection from immune attack and gluco-and lipo-toxicity may prevent the development of DM; and its replacement by non-surgical transplantation may be curative of DM. During a career marked by vision, focus and tenacity, Paul Lacy contributed substantially to the development of each of these concepts.

View Article and Find Full Text PDF

Stimulus-secretion coupling (SSC) in endocrine cells remains underappreciated as a subject for the study/teaching of general physiology. In the present article, we review key new electrophysiological, electrochemical, and fluorescence optical techniques for the study of exocytosis in single cells that have made this a fertile area for recent research. Based on findings using these techniques, we developed a model of SSC for adrenal chromaffin cells that blends features of Ca(2+) entry-dependent SSC (characteristic of neurons) with G protein receptor-coupled, Ca(2+) release-dependent, and second messenger-dependent SSC (characteristic of epithelial exocrine cells and nucleated blood cells).

View Article and Find Full Text PDF

Biphasic insulin secretion in response to glucose, consisting of a transient first phase followed by a progressive second phase, is well described in pancreatic islets. Using single canine beta-cells we have compared the time courses of electrical activity and insulin granule exocytosis to biphasic insulin secretion. Short trains of action potentials, similar those found during first phase insulin secretion, trigger phasic exocytosis from a small pool of insulin granules, likely an immediately releasable pool docked near voltage activated Ca(2+) channels.

View Article and Find Full Text PDF

Given the growing interest in porcine islets as model tissue for studying the pathogenesis of human diabetes mellitus and its treatment by transplantation, we investigated stimulus-exocytosis coupling in single porcine beta-cells using patch clamp electrophysiology, Ca2+ imaging, capacitance tracking and amperometry. We establish that porcine beta-cells display several features prominently seen in beta-cells from human islets of Langerhans. These include: (i) wide heterogeneity of electrical responsiveness to glucose; (ii) dependence of action potential activity on voltage-dependent Na(+) as well as high voltage activated Ca2+ current; (iii) heterogeneity of time course of depolarization-evoked insulin granule exocytosis; and (iv) the dependence of vigorous single cell electrical activity and insulin granule exocytosis on the presence of agents that enhance cytosolic cAMP concentration.

View Article and Find Full Text PDF