Publications by authors named "S Mikheeva"

TWIST1 (TW) is a pro-oncogenic basic helix-loop-helix (bHLH) transcription factor and promotes the hallmark features of malignancy (e.g., cell invasion, cancer cell stemness, and treatment resistance), which contribute to poor prognoses of glioblastoma (GBM).

View Article and Find Full Text PDF

Diffuse invasion into adjacent brain matter by glioblastoma (GBM) is largely responsible for their dismal prognosis. Previously, we showed that the TWIST1 (TW) bHLH transcription factor and its regulated gene periostin () promote invasive phenotypes of GBM cells. Since TW functional effects are regulated by phosphorylation and dimerization, we investigated how phosphorylation of serine 68 in TW regulates TW dimerization, expression, and invasion in glioma cells.

View Article and Find Full Text PDF

TWIST1 (TW) is a bHLH transcription factor (TF) and master regulator of the epithelial-to-mesenchymal transition (EMT). In vitro, TW promotes mesenchymal change, invasion, and self-renewal in glioblastoma (GBM) cells. However, the potential therapeutic relevance of TW has not been established through loss-of-function studies in human GBM cell xenograft models.

View Article and Find Full Text PDF

Twist1 is a master regulator of epithelial mesenchymal transition and carcinoma metastasis. Twist1 has also been associated with increased malignancy of human glioma. However, the impact of inhibiting Twist1 on tumorigenicity has not been characterized in glioma models in the context of different oncogenic transformation paradigms.

View Article and Find Full Text PDF

Background: Periostin is a secreted matricellular protein critical for epithelial-mesenchymal transition and carcinoma metastasis. In glioblastoma, it is highly upregulated compared with normal brain, and existing reports indicate potential prognostic and functional importance in glioma. However, the clinical implications of periostin expression and function related to its therapeutic potential have not been fully explored.

View Article and Find Full Text PDF