Publications by authors named "S Merker"

Ecological variation and anthropogenic landscape modification have had key roles in the diversification and extinction of mammals in Madagascar. Lemurs represent a radiation with more than 100 species, constituting roughly one-fifth of the primate order. Almost all species of lemurs are threatened with extinction, but little is known about their genetic diversity and demographic history.

View Article and Find Full Text PDF

The Hippo pathway transducers yes-associated protein (YAP) and WW-domain containing transcription regulator 1 (WWTR1/TAZ) are key regulators of liver tumorigenesis, promoting tumor formation and progression. Although the first inhibitors are in clinical trials, targeting the relevant upstream regulators of YAP/TAZ activity could prove equally beneficial. To identify regulators of YAP/TAZ activity in hepatocarcinoma (HCC) cells, we carried out a proximity labelling approach (BioID) coupled with mass spectrometry.

View Article and Find Full Text PDF

Purpose: Trailing-edge populations at the low-latitude, receding edge of a shifting range face high extinction risk from climate change unless they are able to track optimal environmental conditions through dispersal.

Methods: We fit dispersal models to the locations of 3165 individually-marked black-throated blue warblers (Setophaga caerulescens) in the southern Appalachian Mountains in North Carolina, USA from 2002 to 2023. Black-throated blue warbler breeding abundance in this population has remained relatively stable at colder and wetter areas at higher elevations but has declined at warmer and drier areas at lower elevations.

View Article and Find Full Text PDF

In humans and plants, 40% of the proteome is cotranslationally acetylated at the N-terminus by a single Nα-acetyltransferase (Nat) termed NatA. The core NatA complex is comprised of the catalytic subunit Nα-acetyltransferase 10 (NAA10) and the ribosome-anchoring subunit NAA15. The regulatory subunit Huntingtin Yeast Partner K (HYPK) and the acetyltransferase NAA50 join this complex in humans.

View Article and Find Full Text PDF
Article Synopsis
  • Noncoding DNA helps scientists understand how genes work and how they relate to diseases in humans.
  • Researchers studied the DNA of many primates to find specific regulatory parts that are important for gene regulation.
  • They discovered a lot of these regulatory elements in humans that are different from those in other mammals, which can help explain human traits and health issues.
View Article and Find Full Text PDF