Publications by authors named "S Merabia"

In this study, we carried out equilibrium molecular dynamics (EMD) simulations of the liquid-liquid (LL) interface between two different Lennard-Jones components with varying miscibility, where we examined the relation between the interfacial tension and the free energy to completely isolate the two liquids using both a mechanical and thermodynamic approach. Using the mechanical approach, we obtained a stress distribution around a quasi-one-dimensional EMD system with a flat LL interface. From the stress distribution, we calculated the LL interfacial tension based on Bakker's equation, which uses the stress anisotropy around the interface, and measured how it varied with miscibility.

View Article and Find Full Text PDF

Penta-NiN, a novel pentagonal 2D sheet with potential nanoelectronic applications, is investigated in terms of its lattice thermal conductivity, stability, and mechanical behavior. A deep learning interatomic potential (DLP) is firstly generated from molecular dynamics (AIMD) data and then utilized for classical molecular dynamics simulations. The DLP's accuracy is verified, showing strong agreement with AIMD results.

View Article and Find Full Text PDF

Plasmonic nanobubbles are composite objects resulting from the interaction between light and metallic nanoparticles immersed in a fluid. Plasmonic nanobubbles have applications in photothermal therapies, drug delivery, microfluidic manipulations, and solar energy conversion. Their early formation is, however, barely characterized due to the short time and length scales relevant to the process.

View Article and Find Full Text PDF

Heat transfer through the interface between a metallic nanoparticle and an electrolyte solution has great importance in a number of applications, ranging from nanoparticle-based cancer treatments to nanofluids and solar energy conversion devices. However, the impact of the surface charge and dissolved ions on heat transfer has been scarcely explored so far. In this study, we compute the interface thermal conductance between hydrophilic and hydrophobic charged gold nanoparticles immersed in an electrolyte using equilibrium molecular dynamics simulations.

View Article and Find Full Text PDF

Thermo-osmotic flows, generated at liquid-solid interfaces by thermal gradients, can be used to produce electric currents from waste heat on charged surfaces. The two key parameters controlling the thermo-osmotic current are the surface charge and the interfacial enthalpy excess due to liquid-solid interactions. While it has been shown that the contribution from water to the enthalpy excess can be crucial, how this contribution is affected by surface charge remained to be understood.

View Article and Find Full Text PDF