Publications by authors named "S Medin"

Introduction SUV measurements from static brain [F]FDG PET acquisitions are a commonly used tool in preclinical research, providing a simple alternative for kinetic modelling, which requires complex and time-consuming dynamic acquisitions. However, SUV can be severely affected by the animal handling and preconditioning protocols, primarily by those that may induce changes in blood glucose levels (BGL). Here, we aimed at developing and investigating the feasibility of SUV-based approaches for a wide range of BGL far beyond normal values, and consequently, to develop and validate a new model to generate standardized and reproducible SUV measurements for any BGL.

View Article and Find Full Text PDF

Background: By evaluating nurses' attitudes and behaviors regarding narcotic drug safety and addiction, effective strategies need to be developed for combating addiction in healthcare institutions. This study, aimed at providing an insight into patient and staff safety issues through the formulation of health policies, aimed to evaluate nurses' attitudes and behaviors regarding narcotic drug safety and addiction.

Methods: The study was conducted in a descriptive cross-sectional design.

View Article and Find Full Text PDF

Rare earth elements (REE) are essential ingredients in many modern technologies, yet their purification remains either environmentally harmful or economically unviable. Adsorption, or biosorption, of REE onto bacterial cell membranes offers a sustainable alternative to traditional solvent extraction methods. But in order for biosorption-based REE purification to compete economically, the capacity and specificity of biosorption sites must be enhanced.

View Article and Find Full Text PDF

Rare earth elements (REE) are essential ingredients of sustainable energy technologies, but separation of individual REE is one of the hardest problems in chemistry today. Biosorption, where molecules adsorb to the surface of biological materials, offers a sustainable alternative to environmentally harmful solvent extractions currently used for separation of rare earth elements (REE). The REE-biosorption capability of some microorganisms allows for REE separations that, under specialized conditions, are already competitive with solvent extractions, suggesting that genetic engineering could allow it to leapfrog existing technologies.

View Article and Find Full Text PDF

Bioleaching of rare earth elements (REEs), using microorganisms such as Gluconobacter oxydans, offers a sustainable alternative to environmentally harmful thermochemical extraction, but is currently not very efficient. Here, we generate a whole-genome knockout collection of single-gene transposon disruption mutants for G. oxydans B58, to identify genes affecting the efficacy of REE bioleaching.

View Article and Find Full Text PDF