A scanning precession electron diffraction system has been integrated with a direct electron detector to allow the collection of improved quality diffraction patterns. This has been used on a two-phase α–β titanium alloy (Timetal® 575) for phase and orientation mapping using an existing pattern-matching algorithm and has been compared to the commonly used detector system, which consisted of a high-speed video-camera imaging the small phosphor focusing screen. Noise is appreciably lower with the direct electron detector, and this is especially noticeable further from the diffraction pattern center where the real electron scattering is reduced and both diffraction spots and inelastic scattering between spots are weaker.
View Article and Find Full Text PDFWe outline a simple routine to correct for non-uniformities in the energy dispersion of a post-column electron energy-loss spectrometer for use in scanning transmission electron microscopy. We directly measure the dispersion and its variations by sweeping a spectral feature across the full camera to produce a calibration that can be used to linearize datasets post-acquisition, without the need for reference materials. The improvements are illustrated using core excitation electron energy-loss spectroscopy (EELS) spectra collected from NiO and diamond samples.
View Article and Find Full Text PDFMagnetic skyrmions are particle-like deformations in a magnetic texture. They have great potential as information carriers in spintronic devices because of their interesting topological properties and favorable motion under spin currents. A new method of nucleating skyrmions at nanoscale defect sites, created in a controlled manner with focused ion beam irradiation, in polycrystalline magnetic multilayer samples with an interfacial Dzyaloshinskii-Moriya interaction, is reported.
View Article and Find Full Text PDFSkyrmions in ultrathin ferromagnetic metal (FM)/heavy metal (HM) multilayer systems produced by conventional sputtering methods have recently generated huge interest due to their applications in the field of spintronics. The sandwich structure with two correctly-chosen heavy metal layers provides an additive interfacial exchange interaction which promotes domain wall or skyrmion spin textures that are Néel in character and with a fixed chirality. Lorentz transmission electron microscopy (TEM) is a high resolution method ideally suited to quantitatively image such chiral magnetic configurations.
View Article and Find Full Text PDFWe have imaged Néel skyrmion bubbles in perpendicularly magnetised polycrystalline multilayers patterned into 1 µm diameter dots, using scanning transmission x-ray microscopy. The skyrmion bubbles can be nucleated by the application of an external magnetic field and are stable at zero field with a diameter of 260 nm. Applying an out of plane field that opposes the magnetisation of the skyrmion bubble core moment applies pressure to the bubble and gradually compresses it to a diameter of approximately 100 nm.
View Article and Find Full Text PDF